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for the Varian XL-100 NMR spectrometer used in these 
studies. 
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Ionization Potentials and Donor Properties of 
Selenium Analogs of Tetrathiafulvalene 

Sir: 

The substitution1 of selenium for sulfur in tetrathiaful­
valene (TTF, 1) extends the metallic state of its charge 
transfer salt with tetracyano-/--quinodimethane (TCNQ)2-3 

to lower temperature. Furthermore, this modification still 
maintains the original TTF-TCNQ crystal structure,1 a 
factor which may facilitate attempts to correlate molecular 
properties of the constituent molecules with the resultant 
solid state properties of the charge transfer salt. In order to 
characterize the changes in donor properties that occur in 
going to the selenium analogs of TTF, we have carried out 
measurements of some of the relevant molecular properties 
of TTF, tetraselenafulvalene (TSeF, 2), and cis- and trans-
diselenadithiafulvalene4 (DSeDTF, 3 and 4). 

CH'} 
x2 \r 

2, Xx_4 = Se 
3, X 1|3 = S; X2,4 = Se 
4, X1,4 =S; X2,3=Se 

Table I. Electrochemical, Spectroscopic, and Mass Spectroscopic 
Data on TTF, DSeDTF, and TSeF" 

Mass 
Electrochemical* Spectroscopic spectrometry 

Donor ex peak e, peak IP^ ECjd IPe IP 

TTF 0.33/ 0.70/ 7.03 3.77 7.00 6.95>">' 
DSeDTF 0.40 0.72 7.10 3.83? 7.06 
TSeF 0.48 0.76 7.18 3.91 7.14 7.21 

" Energy in eV. * Cyclic voltammograms were run in CH3CN at a 
platinum working electrode (5 X 1O-5Af, 0.1 M tetraethylammon-
ium perchlorate, 0.20 V/sec sweep rate, volts vs. SCE). c Calculated 
using the equation: IP = ̂ 1 peak + 6.70 from V. D. Parker, J. Am. 
Chem. Soc, 96, 5656 (1974). ^Energy of lowest charge transfer 
band (CCl4 as acceptor), determined by difference spectroscopy 
in hexane solvent. Calculated from EQJ = I P D - ^ C C l 4 + C: 
EA = 0.65 eV from G. Briegleb, Angew Chem., Int. Ed. Engl, 3, 
617 (1964). C = 2.58 eV from calibration with NJVJV JV'-tetia-
methyl-p-phenylenediamine in CCl4. /Similar values reported by 
D. L. Coffen, J. Q. Chambers, D. R. Williams, P. E. Garret, and 
N. D. Canfield,/. Am. Chem. Soc, 93, 2258 (1971).?Average of 
two charge transfer bands observed. ftData from ref 12. 'IP from 
photoelectron spectroscopy, 6.86 eV: R. Gleiter, E. Schmidt, D. 
O. Cowan, and J. P. Ferraris, /. Electron Spectrosc. Relat. Phenom., 
2,207 (1973). 

Cyclic voltammograms of TTF, DSeDTF, and TSeF in 
CH3CN at a platinum working electrode exhibit two revers­
ible one-electron couples which correspond to the formation 
of the radical cation and the dication of these donors, re­
spectively. The oxidation peak potentials, summarized in 
Table I, reveal an unexpected result. DSeDTF and TSeF 
were more difficult to oxidize, that is, they are weaker do­
nors, than TTF.5 This finding contrasts with the typical 
lowering of the ionization energy encountered when replac­
ing sulfur with selenium in heteroaromatic systems. For ex­
ample, in going from X = S to X = Se in compounds 5 and 
6, the ionization energy was found to decrease by 0.076 and 

OCX} Q 
5 6 

0.11 eV,7 respectively. Interestingly, the difference between 
the first and second oxidation potentials decreases in going 
from TTF to DSeDTF to TSeF (Table I). Small values for 
the ionization energy and for «2 — «i have been suggested8 

as being desirable for electronic conduction in these charge-
transfer salts. 

The energy of charge transfer absorption upon complex 
formation with an acceptor provides an alternate method 
for judging donor strength.9 The high energy (0.14 eV) 
shift in this absorption band for CCI4 as acceptor10 in going 
from TTF to TSeF (Table I) is consistent with the electro­
chemical finding that TSeF is a weaker donor. Further­
more, the calculated association constants11 indicate that 
TTF {K = 0.13) is more effective than TSeF (K = 0.05) in 
forming the donor-CCl4 complex, a result that depends on 
a number of donor properties including ionization potential, 
polarizability, and charge density. 

Measurement of the gas phase ionization potential of 
TSeF, by a mass spectrometric method described previously 
for TTF,1 2 eliminates the possibility that solvation effects or 
other artifacts connected with the spectroscopic and electro­
chemical methods may be responsible for the observed or­
dering of donor strengths. The results of these measure­
ments are summarized in Table I. The agreement of the 
ionization potentials derived from the three methods is re­
markable, perhaps fortuitous, considering the diversity of 
the measurements.13 
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While selenium does possess a lower ionization energy 
than sulfur (10.4 vs. 9.8 eV),14 it also forms much weaker 
7r-bonds to carbon (e.g., C = S x-bond strength, 3.00 eV vs. 
C = S e , 2.15 eV).15 It is the balance between these two op­
posing factors which may be responsible for the different 
trends in ionization energy observed on replacing sulfur 
with selenium in these heteroaromatic systems. The low 
ionization energy in the TTF system probably derives from 
its ability to distribute charge on all four sulfurs by ir-bond-
ing to carbon as illustrated by resonance structure 7. In 

CKJ - CK etc. 

TSeF and DSeDTF radical cations, selenium should enter 
less effectively into such x-bonding, resulting in a less stable 
cation which raises the energy required for ionizing the neu­
tral compound. In compounds such as 5 and 6, the ability of 
the heteroatom to stabilize charge is probably of greater 
importance than 7r-bonding to carbon, since such bonding 
would result in a loss of resonance stabilization (e.g., 8 con­
tributes more than resonance forms such as 9). 

+ • + 

O 
8 

etc. 
CT 
9 

Low ionization potentials have long been considered one 
of the key criteria in judging the ability of a donor molecule 
to form metallic-like charge transfer salts.8 '9 '16 '17 The pres­
ent results suggest that for a given class of donors, in the 
absence of other mitigating factors such as steric effects, 
small increases in ionization energy as a function of substi­
tution need not adversely effect the formation of highly con­
ducting solids. More importantly, we feel that the unexpect­
ed increase of ionization energy in going from sulfur to sele­
nium in TTF may be reflecting important differences in the 
character of the highest occupied molecular orbitals18 for 
these systems. These differences could lead to changes in 
cation charge and spin density distribution, molecular po-
larizability, electron affinity, etc., which may be central to 
an understanding of the improved metallic-like properties of 
TSeF-TCNQ over TTF-TCNQ. We are currently studying 
these properties to further illuminate the relationship be­
tween molecular structure and solid state properties in these 
materials. 
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Anchimeric Assistance to the Anodic 
Annellation of Alkaloids 

Sir: 

We have previously reported that laudanosine (1) and 
various derivatives can be cyclized1,2 by oxidation at plati­
num in acetonitrile at potentials near 1.1 V.3 A number of 
coupling reactions of this type have now been observed in 
both simple4 and complex5"7 methoxybibenzyls. It has been 
generally proposed that the mechanism involves electron 
transfer from an aromatic moiety and coupling of a cation 
radical or dication. The present study demonstrates that at 
low potentials (0.5 V) the amine functionality is intimately 
involved in the coupling reaction of 1. 

OCH, 

CH3O. 

CH3O' 

OCH3 

CH3O. 

-2e 

N C H , 

CH 3 Q 

OCH3 

1 

NCH3 

Cyclic voltammetry was performed using acetonitrile sol­
vent, 0.1 M lithium perchlorate electrolyte, and a platinum 
working electrode. Data are collected in Table I. The fea­
ture of interest in the voltammogram of 1 is a broad anodic 
peak with Ev — 0.55 V. This peak is also present if a glassy 
carbon {Ep = 0.45) or gold ( £ p = 0.5) electrode is em­
ployed or if tetraethylammonium fluoroborate electrolyte 
(Ep = 0.55) is used. As shown in Table I, model amines8 

ranging from triethylamine to tetrahydroisoquinolines all 
have a peak in the region 0.5-0.7 V. The quaternized alka­
loid (3) and the protonated alkaloid (4) do not, however, 
have a peak in this region. It is therefore concluded that ini-
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